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Abstract. The growth of the telecommunication technology led to the increment of
transmission stations and therefore to the necessity for avoiding possible
interference between the corresponding frequencies.

Graph theory is a convenient mathematical tool so to model a frequency assignment
problem to known locations in order to confront interference situations.

Here we present the graph theory concepts of radiocoloring and T —coloring. We
introduce some new invariants related to these notions that can be applied
effectively to modelize and to subsequently solve variations of frequency
assignment problems.

Finally an approximation algorithm for the 7 —chromatic number and for the
T — chromatic cost is developed and a detailed numerical example of the proposed
algorithm for a small graph is presented.
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1. INTRODUCTION

The factor of telecommunication plays an important role to the regional
development planning, since it facilitates the information interchange between
. peripheral and median districts. The information connection contributes
considerably to the economical and cultural progression for the population of
isolated areas and provides a powerfiil item of entertainment in benefit of their
psychological disposition. :

The quality of the transmissions (mobile telephone, radio, television, etc.) is
significantly rectified by excluding interference between broadcast stations.

Frequency interference may occur between a subset of couples of stations for
reason of closeness, geographic structure, atmospheric configuration, etc. Therefore
the problem that arises refers to the assignment of frequencies to different stations
taking into account interference occurrences. There exist certain variations of
frequency assignment problems, depending on the number of channels allocated
and on the sort of the required frequencies assigned at every station. For every
frequency assignment problem a corresponding optimization question follows
which depends on the considered measure, for example, the fewest number of used
frequencies and the smallest deviation among the used frequencies.

- The concept of graph coloring and some of its generalizations are suitable
tools for describing visually diverse frequency assignment problems in order to
solve them.

For reason of self-reliancy the next section is devoted to the notions of graph
theory, see [1], [2] that are employed in the sequel. In Section 3 we present the
. notions of radiocoloring, 7 - coloring, see [3], [4] and we introduce new invariants
“which are generalizations of graph coloring. Section 4 is dedicated to the
development of a heuristic algorithm see [5] that finds a good approximation for the
T —chromatic number and T - chromatic cost for a given arbitrary graph. Also a
detailed example of the working process of the algorithm is! presented. The:
conclusions are the content of the last section.

1. DEFINITIONS — NOTATIONS

Let V' ={v,,v,,...,v,} be a nonempty set and EcV x}' a subset of
unordered couples (v,,v,),v,,v, €}". The ordered pair (},E) defines a graph
G =(V,E). The elements of } are usually called vertices, nodes or points and the _

elements of E links, lines or edges respectively. A graph can easily be drawn in the
plane providing a good image of the connection structure of the elements of F~ for
relatively small graphs.

Two nodes v, and v, are adjacent if they define an edge‘, ie,(v,,v,)e E. The

set of adjacent nodes of a node v, €} is denoted by I'(v,), i.e, I'(v,)={ y such
«that (v,,y)e £} while the nonadjacent nodes of v, are symbolized by
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I'(v)=V-I'(v,). The degree deg(v,) of a node v, €V expresses the number of |
adjacent nodes to v, obviously deg(v,) =|T'(v,)|.

The set of all adjacent nodes of all nodes in a set S} in the set

I =UJre).

ves

A path is a sequence p={v,,v, ,...,v, } of consecutive edges v, -v) such
that v, € l’(vij_‘) for j=2,3,....k.

The distance d(x,y) between two nodes x,y €}’ is the minimum number of
edges that joins x and y with a path.

A graph G'=(V',E") is a subgraph of G=(V,F) if V'c} and E’
comprises only the edge of E that are produced by nodes in V', ie,
E'={(x,y)eE and x,y eV'}. We also denote the subgraph G’ of G by G(V'").

The adjacent and nonadjacent nodes of v eV’ in subgraph G(V'') are expressed by
T,.(v) and T,,.(v) respectively. :

A subset SV is called independent set in G=(V,E) if for every pair
{v,v;}cS§, v, and v, are not adjacent ie, v, ¢I'(v,)v, ¢l(v). An
independent set is maximal if it is not contained in any other independent set.

An assignment of colors to the nodes of a graph G so that adjacent nodes has

different colors is a coloring of G . A coloring of G with n colors is a n—coloring
and G is n—colorable. The minimum number of colors needed to perform a

coloring of G is called the chromatic number y(G)of G . Obviously if n =]
and ¥(G) < g <n then G is g —colorable. In a coloring, the nodes that are assigned
the same color form a coloring class. Clearly a coloring class , c ¥V is an
independent set.

We define a reciprocal correspondence between the set of colors and the set
of posmve integers /* ={1,2,3,...}. In the continuation the colors will be referred

by numbers in /*. A graph coloring is a positive function ¢ from the nodes of I
to I*,ie., c:V — ", where c(y) express the color assigned to node yel’.
the subsequent sections a color represents a specific frequency and inversely.

The above conceptions are illuminated in the subsequent figures for graph
G=(.E), where V ={v,,v,,....,V}., E={(¥,v,).(v,V3)...(v5, )} and the

colors in Figures 2a, 2b are represented by numbers of /.

rv,)={v,,v;} , deg(v,) =2
I(,)={v,vs, v}, deg(v,)=3

r(v6)= {vz,vuvs}, deg(v6)=3

for S ={v,,v,}
r(S)= {v‘,vz,vs,v“vﬁ}

Figure 1. Graph G




C, ={v,,v}
C; = {vg}
C4 = {Vﬁ}

Figure 2-a. 4-coloring of G

(wl = {"za"'ﬁ} 2 ° 1 °
Cy =0,
(3

[ 2]

°'° |
1
Figure 2-b. 3-coloring of G

G'=(F" E)

[ g {vl Vv, }

Figure 3. Subgraph ;' of G

- 2. COLORING GENERALIZATION

In this section we present the generalization of the graph coloring concepts
which are prominent for the modelization of frequency assignment problems. We

also define invariants for every coloring type, that are suitable for the study of such
problems for diverse objectives.

3.1. Radiocoloring

The notion of radiocoloring is a coloring conéeption convenient to modelize
ordinary frequency assignment problems. A graph G is radiocolored if the colors
c(v,) assigned to every node v, € I/ verify the following two conditions
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) ’c(v,)—c(v_]) ,_>_2 for every (v,v))ek
i) if d(v,,v,)=2 then c(v,)#c(v,)

Namely, if two stations interfere, ie., (v,,vj)e E then the frequency

difference must be greater or equal than 2. Also stations that are distance two apart
should not be assigned the same color, this means that the intermediate nodes of the
couple {v,,v,} when d(v,,v,) =2 must not be influenced by the same frequency,
as shown in Figure 4. The squared nodes are intermediate nodes of the couple
{v;,v,} for which dv,v;)=2.

—10

OF—

Figure 4. Intermediate nodes

A radiocoloring that uses g colorsi a g —radiocoloring . Let G = (V',E) be a

graph with m nodes. We represent a particular radiocoloring, say R, with the use
of a linear array of m elements, where the ; element of R express the color

assigned to node v, , namely, R@i)=c(v)).

The following invariants can be defined in a graph G :

. The radiochromatic score rs(G,R)of a radiocoloring R is the number of
used colors.

©  The number of colors used in a radiocoloring with the minimum score is
the radiochromatic number rn(G Yof G .

®  The radiochromatic price rp(G,R) of a radiocoloring R is the value of
the largest used color. '

e  The largest used color in a radiocoloring with the minimum price is the
radiochromatic value rv(G) of G .

*  The radiochromatic weight rw(G, R)of a radiocoloring R is the sum of
the used colors. ,

e  The sum of the used colors in a radiocoloring with the minimum weight is
the radiochromatic cost re(G) of G |

e The radiochromatic gap rg(G,R) of a radiocoloring R is the difference
between the smallest and the largest used colors.

e  The difference between the smallest and the largest used colors in a
radiocoloring with the minimum gap is the radiochromatic bandwidth
rb(G) of G .




Figure 7. 4 radiocoloring, R=[124612]

The Figures 5,6 and 7 show two radiocolorings of a six nodes graph G .
The values of the invariants for the radiocoloring of Figure 5 are
(G)=rn(G) =4, rip(G)=T,w(G) =22, rg(G)=6.

For the radiocoloring of Figure 6 we have
rs(G)=5,mp(G)=rm(G)=5, rw(G) =18, rg(G) = rf(G) = 4

and for the radiocoloring of Figure 7

r5(G) = rn(G) =4, rp(G) =6, (G) = re(G) = 16 , rg(G)=5.
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The relations reflected with bold character indicate the minimum values of the
corresponding invariant.

3.2. T - coloring

Let 7 be a set that contains 0 and positive integers. A coloring of G = (I, E)
is called a T —coloring if the difference of the colors assigned to adjacent nodes of
isnotin T, ie., | c(v)~c(v,)|eT.

Two transmission stations that utilize Ultra-High Frequencies (UHF) and that

interfere should use frequencies the difference of which must not belong to set
T={0,7,14,15}.

A T -coloring that uses g colors is a g-T —coloring. A particular

T —coloring is represented by an array with the same manner as for radiocoloring.
Similarly to radiocoloring the subsequent invariant for the T —coloring of (+ can be
deduced.

The following invariants can be defined in a graph G :

e  The T —chromatic score Ts(G,T,R)of a T —coloring is the number of
used colors.

e  The number of colors used in a 7 —coloring with the minimum score 1s
the T —chromatic number Tn(G,T)of G .

® The T —chromatic price Tp(G,T,R) of a T —coloring is the value of the
largest used color.

e  The largest used color in a T —coloring with the minimum price is the
T —chromatic value TW(G,T) of G .

e  The T —chromatic weight Tw(G,T,R)of a T —coloring is the sum of the
used colors.

o  The sum of the used colors in a T - coloring with the minimum weight is
the T —chromatic cost Tc(G,T) of G .

o  The T-chromatic gap Tg(G,T,R) of a T —coloring is the difference
between the smallest and the largest used colors.

e The difference between the smallest and the largest used colors in a
T —coloring with the minimum gap is the T —chromatic bandwidth

TH(G,T) of G .

The iT—coloring for the sketched graph in Figure 8 for 7={0,13},
~ cormresponds to a T —coloring, that corresponds to the following values of the
invariant described above Tn(G) =3, TW(G) =5, Tc(G) =18 and TH(G) =4.
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Figure 8. T ~coloring, R=[133155]

Of course for larger graphs it is unusual for a specific T —coloring to meet
simultaneously all these T —coloring invariants. The next section is devoted to a
I - coloring algorithm.

4. T-COLORING ALGORITHM

Here we will develop a heuristic algorithm that generates a 1" — coloring that
has a satisfactory approximation of the 7 —chromatic number and the
7" - chromatic cost for an arbitrary graph G . Before proceeding to the steps of the
algorithm we give the interpretation of the used notations and a description of the
algorithm reasonings.

K . Set that contains the colors used so far
c, : Set that contains the nodes colored with color jek
{ . Set that contains the so far uncolored nodes [/ oV
Vi =1 -1 . set that contains the so far colored nodes
~H v) © A maximal independent set in subgraph G(U) produced by

vell ,ie. ve H(U/,v)
I(H({U/,y)) ¥/ : colored nodes adjacent to H .y

The algorithm proceeds in a greedy way. Specifically, the process finds an
uncolored node, say y, that leads to a large maximal independent set ( mis )

H(l7,y) in subgraph (G({/) of (5. Subsequently the nodes of H (U,y) are colored
with the smallest feasible color, say j, feasible in the sense that the new color
assigned to the nodes of H(I/,y) must not violate the T —coloring condition. In
other words the colors of the colored adjacent nodes of H(U, ) which is the set
I'(H(7,y)) V1 must have a separation that, is not contained in 7. The

algorithm terminates when (/ = & .
The above analysis is systematically applied in the following steps.
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T — coloring Algorithm

Step 1: SetU « V., K« O
Step 2 : U= goto Step 6

* Step3: Find node y such that H{U,y) = max{H (U v)}

Step 4 : Let j={ the smallest positive integer such that | j—c(w) |e T ,
Vwe (T(HU,y)VU)}
Step5: Set C,;«HU,y»), K« K+{j},U«U~-HU,y) and proceed to
Step 2
Step6:  Write ,
i. T ~chromatic price |K]|
ii. T -chromatic weight Z]C il
jek

iii. The T -coloringclass C, ,je K

Example
Consider the graph G = (V,E) of Flgure 9and 7={0,1,3}

Figure 9. Graph G

We form the list array 4 of nonadjacent nodes for every node ve U . At the
starting step U =V . The nonadjacent nodes are placed from left to right in
increasing order of their degree in G(U') so to augment the probability to achieve a
large maximal independent set, since the construction of a mis is performed from
left to right. In the following tables the nodes are indicated by their:indices.

. ForU=V

i f(v) i HU,v)
1 6 5 4 1 1 6 5
2 |16 3 2 |2 6 3
3 {6 5 2 3 3 6 5

A= | 4 1 : 4 4 1 ’
5 |16 .1 3 5 5 6 1
6 |5 3 1 2 6 |6 5 3
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A largest mis among alternatives is { 1. 6.5} . We color these nodes with the
color 1,thus CC, ={1.6,5}. :

We get the subgraph of the remaining uncolored node {’ = {2.3.4}. The
subgraph G(I/) is showed with bold lines in Figure 10. The assigned colors are
indicated nearby each colored node.

Figure 10. Subgraph G(7). inbold. R=[1- - -11]

For {/={2,3.4}

T T H(UY)
2 03 ] 22 3

A= 13 2 ! 3 13 2
4 2 3 EIRE

We color node 2 and 3 with the smallest feasible color. which is color number
3. We get the one node subgraph. shown in bold.

Figure 11. Subgraph G(U), U ={ 4} . R=[133-11]

For U = {4}

i T, o) ]
A= 14 Q&

\
x

=
o~
C.N'
-

-V

We color node 4 with color 5.

The algorithm terminates since {/ = { O} . The derived 7"~ coloring of (7 is:
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O

Figure 12. Derived T —coloring, R=[133511]

5. CONCLUSIONS

The radiocoloring and 7 —coloring are reduced to the simple coloring with a
casual alteration in their definitions. The radiocoloring is equivalent to coloring if
the condition of distance 2 is dropped and the first condition requires that the color
separation of adjacent nodes is greater or equal than 1 instead of 2, that is

l c(v,)—c(v,) l 2l \V(v.v)ek

The T - coloring is identical to the simple coloring if the positive integers are
subtracted from 7, thatis when 7 ={0}.

The concepts of radiocoloring and 7 —coloring and the corresponding
invariants with minor modification can be suitable for the solving problems in
diverse fields, as for example resource or job allocation. task scheduling.
investment planning, etc. where the nodes may represent locations. equipments.
profit, etc. and the edges constraints concerning simuitaneous utilization of
investments, operation delay, etc.

All the invariants mentioned here belongs to the category of N/’ ~complete
problems [6] and the corresponding minimization problems are NP - Hard.

For relatively large graphs, it is laborious even to find a feasible solution for
the T —coloring problem without the use of a relative computer algorithm. The
procedure presented in section 4 gives an approximation of the 7 —chromatic
number and 7 —cost in addition of a feasible 7" — coloring for an arbitrary graph.
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