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Abstract. We study a continuous review inventory model over a finite planning
horizon with deterministic time-varying demand and constant deterioration rate. The
mode! allows for shortages, which are partial backlogged at a rate that varies
exponentially with time. The effect of time value of money is, also, taken into
consideration. Applying the discount cash flow (DCF) approach for problem analysis,

we propose an algorithm to find the optimal replenishment policy for this model.
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1. INTRODUCTION -

' The deterioration of many items during storage period is a real fact. Ghare and
Schrader [1] have studied an inventory model taking into account the effect of
deterioration of items in storage. In their model they introduced a constant
deterioration rate, while demand rate was also taken to be constant. Covert and Phillip
[2], Tadikamalla [3], and Shah [4] extended Ghare and Schrader’s model by relaxing
the assumption of constant deterioration rate and introducing other modes of
deterioration.

" Later, Dave and Patel [5] developed an inventory model with deterministic but
linearly changing demand rate, constant detferioration rate and finite planning horizon.
Sachan [6] extended Dave and Patel’s model to allow for shortages. Datta and Pall [7]
presented an EOQ model considering variable deterioration and power demand
pattern. Research on models with deteriorating items, time varying demand and
shortages continues with Goswami and Chaudhuri [8], Benkherouf [9], Hariga [10],
Chakrabarti and Chaudhuri [11], Hariga and Alyan [12], Teng et al [13]. The common
characteristic of all the above articles is that they allow for shortages while unsatisfied
demand is completely backlogged.

Wee and Mercan [14] relaxed this assumption. They considered an inventory model
over a finite-planning horizon with constant demand and deterioration rates.
Additionally they assumed that only a fraction B, 0<B<1, of demand during the
stockout period is backlogged. Other researchers who used the idea of partial
backlogging are Wee [15, 16}, Chang and Dye [17] and others.

In all of the above-mentioned models, the time value of money was disregarded.
However, with today’s large scale of inflation in world economics, the impact of both
inflation and time value of money on the selection of the inventory policy should be
considered. The first attempt in this direction was the article by Buzacott [18] going
back to 1975. Up to now a considerable volume of research concerning deteriorating
inventories and time value of money has appeared in the literature. Sample of those
are the articles [19]-[22].

In this article we study an inventory model over a finite planning horizon, with
constant deterioration rate, time varying demand rate and time dependent partial
backlogging. More explicitly we suppose that the rate of backlogged demand
increases exponentially as the waiting time to the next replenishment decreases. We
believe that this is a quite reasonable assumption since as the waiting time decreases,
more and more customers are willing to wait to get their orders as soon as the
backlogged demand reaches the system at the next replenishment. Moreover, we
adopt a discounted cash flow approach to obtain the present value of involved costs.
This is also reasonable approach since, owing to Asia, Russia and Brazil financial
crisis, most of the countries have suffered from large scale inflation and sharp decline
in the purchasing power of money last several years (see also Chung and Lin [21]).
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2. ASSUMPTIONS AND NOTATION

In this section we state the assumptions under which our continuous review inventory
model is developed and we present the notation used throughout this paper.

Assumptions

1. The planning horizon of the system is finite and is taken as H time units. The
- initial and final inventory levels during the planning horizon are both set to zero.

2. Replenishment is instantaneous (replenishment rate is infinite).

The lead-time is zero. «

4. The on hand inventory deteriorates at a constant rate 6 (0<6<1) per time unit. The
deteriorated items are withdrawn immediately from the warehouse and there is no
provision for repair or replacement.

5. The rate of demand at time, t € [0, H], is a continuous, logconcave function f{t)

with £(1)=0 for all t.

The system allows for shortages in all cycles and each cycle starts with shortages.

Unsatisfied demand is backlogged at a rate exp(—ax), where x is the time up to the

next replenishment and o a parameter.

8. A DCF approach is adopted to consider the time value of money. The discount is
applied continuously.

w

=N e

Notation

n the number of replenishment cycles during the planmng honzon
S time at which shortage starts during the ith cycle i=1,... n.

t time at which the ith replenishment is made i=1,.. .,n,

G variable replenishment lot size ordered at instant t; i=1,...,n.

A +Cq; the replenishment cost for the ith cycle, where A is a fixed set up
replenishment cost and C is the additional replenishment cost paid per unit of ordered
item.

C holding cost per unit of stock carried per unit time.
C; shortage cost per unit of shortage per unit time.

Cs opportunity cost due to lost sales per unit of lost sale
r discount rate

CI; the amount of inventory carried during the ith cycle.
DI; the amount of deteriorated items during the ith cycle.
S the amount of units in shortages during the ith cycle.
LI the amount of lost sales units during the ith cycle.

I(t) the inventory level at time t.
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3. THE MATHEMATICAL FORMULATION OF THE MODEL

A realization of the inventory level in the system is given in figure 1. The depletion of
the inventory level during the interval [ti, si], of the ith replenishment cycle, is due to
the joint effect of demand and deterioration. Hence the differential equation which
. describes the variation of inventory level, I(t), with respect to time t is:
E0 — 1) -0, e, (1)
with boundary condition I(s))=0, i=1,....n.

The solution of (1) is

I(t)=e_et jieeuf(u)du , H<t<s;. . 2)
t

From (2) we get that, the amount of inventory carried during the ith cycle is given by
CIFé § e _Df(e)dt. 3)
ll

The variation of the inventory level, I(t), at any time, t, in the interval [s;,, ti] is
described by the differential equation
di(t) ~a(t;-1)
—_—= e
di
with boundary condition I(s;)=~0 i=1,...n

f(t), sa<t<t (C))

The solution of (4) is
t

. I(t)=- J.e_a(ti—u)f(u )du , s < t<t . (%)

Sip

From (5) we obtain the amount of shortage during the ith cycle as

SI= ] [ e F(u)dudt = }e'““""“’(t, ~w)f (u)du. (©)

Si-1 8in )1

The amount of lost sales during the ith cycle is

Y
LE= [ (1-e™"")f (u)du. (7

31

The lot size, g, for the ith cycle, is made up by the sum of maximum and minimum

stock levels recorded over the cycle. So by, using equations (5) and (2), we obtain it as
t

Q= J‘e"a(""")f(u)du + jiee‘"'l‘)f(u)du‘ (8)

Si1
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In order to formulate the present value of the total inventory cost function we need to
find the present value of each of the involved cost during the ith cycle
The present value of the purchasmg cost during the ith cycle is given by

Ce™( j' e f(u)du + | € Vf(u)du) ©)
i1 i
The present value of the holding cost during the izh cycle is given by
c,}e-“’*'" fe £ (u)dudt ' (10)
4 t
Using integration by parts we obtain
Ej(ee(“ ) _ —r(“"f‘))f(u)du (1 l)
r+6

The present value of the shortages cost during the ith cycle is given by
C j e j e~ f (u)dudt ' 12)

By 81

which simplifies to

9;2— ? e e™ —e™ )f(u)du | (13)

'l-;x
The present value of the lost sales cost during the itk cycle is given by

} "“(l—e"‘""“’)f(u)du ' (14)
Now we have all necessary quantities to formulate the present value of the total
inventory cost function for any policy, which has n cycles. This is the sum of the
following costs: replemshment holding, shortage and opportunity, and is glven by

TC(n, s, t)= 3 (A+Cq, )+C1 Y CL +C Y ST, + CaZLI

i=1 i=1 i=l

n n -, X
=3 Ae™ +Z}(——(C‘e ) gy . Ce Oy () du

i=1 =l g, r+0

1

3 fosmamen G

i=l g,

C, -«(ﬁ—w(e-m —e")+Ce ™ (- V) (u)du (15)

The minimization of this function w.rt. n, t;, s;, will give the optimal policy of the
problem.

4. THE OPTIMAL REPLENISHMENT POLICY

The continuity of f{t) implies that TC(n, s, t;) is a continuous function of s;, t; and
its first and second order partial derivatives exist. For a fixed value of n, taking first
order derivatives of TC(n, s;, t;) with respect to t;, s; and equating them to zero we
obtain the necessary conditions for a minimum of TC(n, s;, t;), which are:
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Ar+(C, + C(r+8)[e”* " 'f(u)du =
by .

]
j (e ™" (~C(r+a) ~ 22 (e’“' W -1 +C, + Coe™ ) (u)du, i=1,.. (16)
Ce (rs )t b i W C] [e()(r. -1 _e—r(s;-li)]:
C
r+0o a7

e (e + S2 (@™ _ey _Cem)4Cie™, i1, pel
r

We must note that the above systems of equations has always a solution if the
following conditions are satisﬁed'

a) C2+C3a-C(r+a) ( R_1Dn>0

G >C,

That is the above conditions are sufficient but not necessary for the existence of a
solution.

The first condition guarantees that the right hand side of the eq. (16) is a positive
number and the second condition guarantees that the right hand side of the eq. (17)is
a positive number.

If t{, s;, i=1, 2,...,n, is a solution of the above system of equations, this gives a
minimum for TC(n, s;, t;). The proof is given in the appendix. Moreover we shall
prove that the system of equations (16), (17) has a unique solution in t;, s; on the

interval [0, H] and so the above minimum is a global minimum.

We shall now present the algorithm used to solve the system of equations (16) and
(17) and we shall prove that the obtained solution is unique. It is easy to see that, once
t; is known, si(t;) can be obtained from (16). Then ts(t;) can be obtained from (17)
and following this alternate procedure we can find sy(ty),..., sa(t;). The choice of t,
plays a key role, as all subsequent parameters become functions of this. It is obvious
that the set of t;, s; values so produced will be a solution of the above system only if
the starting point t; is such that s,(t;)=H. So the question, which arises is if such a
choice for t; is possible. The lemma, which follows, gives a positive answer.

Lemma 1. The function s,(t;) is monotonically increasing with respect to the variable
t; if the demand rate is an increasing function w.r.t. t.

Proof. Since f{t) is logconcave, % is strictly increasing in t, for t<t<s;, and so we

t,)

have f (t)< f(t ——=f(t). Multiplying this inequality by ¢*'™') and adding the term

e™ " f{t)>0 to both sides of the resulting inequality, we obtain

e E(£) + 0™ VF(E) < %) ———;(‘: L6+ 0" 8(t), titss, (18)
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Now we multiply both sides of (18) by C;+C(r+8) and then we integrate with respect
to t in the interval [t;, s5;]. After some elementary operations we obtain the inequality

(C, +C(r+O)[e™ f(s,) - £(t,)] < (C, + C(r + e))[-t;—'((:i—)) +6] j e Uf()dt.  (19)
i t .

Due to (16) the above inequality becomes ;

(C, +C(r +0)e™™ 'f(s,) - f(z,) - e]'e"‘ SUE(t)dt]

) L]
< —f(—t‘)-(—Ar + J- (e ™ (-C(r+a) —E&(e”" =D +C, +Cyoe™ ) (u)du,  (20)
f(t,) e T ; .
- We know that
C2+C3‘a-C(r+a) -—Clz_—m(e’H -D>0and {,—(%‘)l < %((Tt))— for s;. <t<t;.

Taking these inequalities into account in the right hand side of (20) and then .
integrating by parts we obtain

(C, +C(r +0))[e®™ ™ f(s,) ~ f(t,) -6 j' e Vf(t)dt] <

g7 H b ’(—C(r +a)- .a_C?-(e” Gosig) 1) +C2 + acaer(l.—s.., ))f(sl_])
T
: £(t.) (21
HAC(r+a)+C, +Cia)f(t,) - Arf—(t'7

—} ae " (-Cr+a) ——O—L&(e"““” -D)+C; +aCe™ ") (u)du
r

B3

Let us set Mi=si-t} and K;=t;-s; ;. Obviously M;, K; are functions of ;. Substituting M;,
Ki into (16) and differentiating (16) with respect to t; for i=1,....n, we obtain the
system of equations.

(C, +C(r+8)){e™f(s, )%Mt_i + %’-[e"M £(s,) - £(t,) -0 j "V E(t)dt]}
1 Y

1

=(-C(r+a)+C, +aC3)9-th(t,)
dt, @2)
—(ﬁt—' —ﬁ)(—C(r +a)+C, ~°‘—C2-(e"9 ~D+aCe™)e “f(s, )
dt, dt, r
—otgL ] e ™ "“"(—C(r+a).-——o£:l(e” VD) +C, +aCe™ ) (u)du
r

L

Fbr i=1 we have K;=t;-so=t; and since %ﬂ we also have %]t(—‘ =1. By using (22) for
1 1
1=1 and replacing these derivatives we obtain _ -
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(C, +C(r +6))e™ £(s, )%1:4_1 =

dK )
! 2™ -1 +C, +aCe™ )(s,)

. - aC
: —Ee K (—Cr+a) - .
H-C(r +a) +aC, +C,)f(t,)
aC,
r

| - (-C(r+a)+C, - (€™ —D+aCe™)f(s,) (23)

—a}e'“(" -C(r+a) - Eﬁc—z(e'("‘ oD+ éz +aCe™ ™) (u)du
r
%

—(C(r +8) + C)[f (s)e™ ~f(t,)~ 9}&’“"1 'f(t)dt]
4

Using inequality (20) and the fact that Co+Csa-C(r+a) —-C-zg(erH -1>0 we conclude
r

that the right-hand side of (23) is a positive number,-which implies that 5‘::—' >0.

1

Next, differentiating (17) with respect to t; we have
(CO+1)+C)e™ %-h:l-‘- =(-C(r+a)— 4C—2(e"“ -D+aC,+C, )%e"‘“*”“‘
r

1 1

The left-hand side in the above equation is positive and so, d}; 1>0.
1

Using the same technique we can prove that %—‘— >0 and 9d-1:1—i—> Ofori=1,...n Itis
1 i

dsn (tl) §

obvious that s.,(t|)=}':“_‘(1\/[i +N;). The above results show that >0, which

i=1 1
implies that the function sy(t:) is strictly increasing with respect to t;.
Using induction on i we can prove the following

Corollary 1. The functions ti(t;), si(t;), i=1, 2,..., n are monotonically increasing
w.r.t. t; if f{t) is a increasing function of't.
It is obvious that the first choice of't, is arbitrary (usually selected as t;=H/n), however
because of lemma 1 the variation (increasing/decreasing) of values of t; are prescribed
such that s,(t;)=H.

Now we present the theorem, which ensures the existence of a unique optimal
number of replenishments, n, and consequently the existence of a unique optimal
policy for the problem under consideration.

Theorem 1. The cost, TC(n, s;, t; ), of the optimal policy with n replenishments, is a
convex function with respect to n.

«Proof. The proof of this theorem will be established by using dynamic programming.
The technique is similar to that used by Teng et al. [13] and Friedman [23]. A policy
with n replenishment cycles and s;, t; shortages and ordering points, starts its first
cycle at so=0 and ends its last cycle at time s,=H. The realization of the stock level in
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the system is monitored and as the ith cycle is completed we observe the value of the
decision variable s;. This can be any value in the interval (0, H). So, for this process
the stage space (points at which we keep records of the process) is {1, 2, ..., n}, while
the state space (points at which shortages start) at each stage is any value in the

interval (0, H)

To prove the convexity it is enough to show that
TC(n+1, 0, H) - TC(n, 0, H)> TC(n, 0, H)- TC(n-1, 0, H) (24)

Applying Bellman’s principle of optimality [24] we end up with the following -

forward dynamic programming equation

TC(,0, )= Mig {TC(-1, 0, 53+ G(1, 5, H)} )

where G(1, s, H) is the cost of the last cycle starting at any time s and finishing at H.

Recursive application of (25) yields the optimal ith shortage point, s.;(n, O,
H)=s,_(n-j+1, 0, S (0, 0, ), j=1,....n, for any policy with n orders placed in the

interval [0, H].

For s=H (25) gives TC(n, 0, H)<TC(n-1, 0, H). This proves that TC(n, 0, H) is strictly

decreasing function with respect to n. Let us now choose H;, H; >H so that
55 (o1, 0, Hi)= s,y (n+2, 0, Hy)=H. (26)

Since s, (n+1, 0, H;)=H, by employing the principle of optimality, we have
TC (n+1, 0, Hy)= Min {TC(n, 0, s)}+ G(1, s, H)}

=TC(n, 0, H)+G(1, H, Hy). @7)
But this implies that
ATC, 0,0+ GL,t, H)] _ 9TCm, 0,9 &G (Lt H)l o | 28)
a ’ & & |I=H '
So
JTC(n, 0, t), _ 8G(, t, H))
T 89, - BELH)
=(Ceeﬂ ~(r+O)t; (0. 0, H) +_r_C-;|6(eB(H-!;(n. 0, H) _e—r(H»l',(n. 0. H))))f(H) ) (29)

where t (ﬁ, 0, H) is the last optimal replenishment time when n orders are placed

* during the interval [0, H]. Similarly, from s, (n+2, 0, Hy)=H, we have
dTC@m +1, 0, t) aG(l, t, H)
a It:H =- a |:=H

= (CetH- O ta 0 0 Cle (PH-Sntnh 0 Y _ oorlH-Cutae 0. N YyF(pyy — (30)
I+

j
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Subtracting eq. (30) from eq. (29) we obtain

oTC(n, 0, H) a—}’{l‘C‘(n +1, 0, H)>O, » 31)
which implies that T(n, 0, H)-T(n+1, 0, H) is a strictly increasing function with
respect to H. From (25) and (27) we obtain

TC(n, 0, Hy) - TC(n+1, 0, Hy) =
Min {TC(n-1, 0, s)+ G(1, s, Hy)} - {TC(n, 0, H)+G(1, H, H})}. (32)

se((), H;)

For s=H, eq. (32) gives
TC(n, 0, Hy) - TC(n+1, 0, H)< TC(n-1, 0, H) - TC(n, 0, H) (33)

Since H<H; and T(n, 0, H}-T(n+1, 0, H) is a strictly increasing function with respect

to H, we obtain the relation (24). This implies that TC(n, s;, t;) is also convex with
respect to n.

S. NUMERICAL EXAMPLES
To illustrate the algorithm described above we consider the following examples.

FExample 1
f(t)=600+2t, A=250, C=5, C,=1.75, C;=3, C3=4, =0.2, 0=0.2, 0=0.02, H=10.

From [16] and [17] and s,(t;)=H the present value of total cost, TC, can be found for
different values of n. In table 1 we give the optimal replenishment policy. Its
corresponding cost is 16371.6.

ti | 0.4815 | 1.2461 | 2.1132 | 3.1167 | 4.5252 | 6.3777 [ 9.0764

n:
0.7267 | 1.5098 | 2.4177 | 3.5406 | 5.0086 | 7.0318 | 10

S;

Table 1: The optimal replenishment policy.

For a=0 this example results to the one used by Chung and Tsai [22].
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Example 2

0.51

We consider the same as above example changing the demand rate to f{t)=20e""".
In table 2 we give the optimal replenishment policy. Its corresponding cost is 8078.8.

Si

2.76 4.0212 | 6.6057 | 8.1242 | 9.6274

3.3642 | 5.3895 | 7.0117 | 8.5082 | 10

Table 2: The optimal replenishment policy.

6. CONCLUDING REMARKS

6.
7.
8.

In the model studied in this paper if we set the parameter a, of the backlogging
rate function equal to zero, i.e. a=0, we revert to the model with complete
backlogging of the unsatisfied demand.

If a=0 and f{t) linear we obtain the model studied by Bhunia and Maiti [25].
However we must mention that the optimal policy found by these authors
belongs to the class of policies with replenishment cycles of equal lengths,
while in our model we have relaxed this condition by allowing policies with
replenishment cycles of any length.

If we set C=0, a=0 and =0 we obtain the mode! developed by Hariga [10].

If we set C=0, a=0, 6=0 and f{t) linear, our model yields the one studied by
Goyal et al [26].

If we set C=0, C3=0, r=0, we obtain the model developed Papachristos and
Skourti [27].

If we set r=0, we obtain the model developed Skouri and Papachristos [28].

If f{t) is constant we obtain the model developed by Chung and Lin [21].

If f{t) is linear we obtain the model developed by Chung and Tsai [22].

However the most of the above mentioned models considered the deterioration cost
but we believe that this cost can be embedded in the holding cost.
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APPENDIX

Checking the conditions for a minimum of TC(n, s; t).

For convenience/let us set TC(, s;, t)=TC. To ensure that the solution of equations (16) and
(17) gives a minimum it is sufficient to prove that the associated Hessian matrix has all its
principal‘ minors positive. Thereinafter we prove that this is true if flt) is an increasing
function of t. The elements of the Hessian matrix are.

&°TC

j, k=0,1,...,n-1,

Hor2541=
' T2 R T3

2
oTe k,j=1,....n-1,
Os

L

Hy 2=

-

&TC

k+1"7]

Hoxn1 5= k=0,2,...,n-1,j=1,...n,

&*TC

thzj+|= k=1,...,n,j=1,2, ...,n-l.

 Jubg 13}
The non - zero entries of the Hessian matrix are

PTC_
ol ' , !

j+1 :

H23+ L2+ 1T

Sju .
(C(r+8)+C)E(t;,) +6(CO+1)+C) j ™" f(t)dt + (—C(r +a)+aC, + C ) (1)

tin

tia )
- [ e ™ (-Clr+a) _9G () 14 €, +aCe™ ™ +(C, —1C,)e ) (u)du
T

5

Hi = B;C = (CHCrH0) e e ™ fig)+

i

(-C(o+1) _9Cs () _ ) o€ e i +C e e T T RS j=1.2,m,
r

&*TC

k+12)

Hanr. 2 =Haj, 2™ = - (CrC+0) ™™™ f{s) k=0, 2,..., n-1, j=k+1,
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o*TC _
o5,

j+1

H 31, 2=Ha 1=

~(-Cla+n-Z z(e'““"‘) ~D+aCe™ ™ ¢, )e e ™ (s ) k=1, ..,n-1, j=k.

‘We observe that Hzﬁ-l,zjq-|>o, sz, >0, Hzp,]_ %<0 and Hy 2i+1<0
Let M; be the principal minor of order k, themr

f(t.
M1=H1,|>AI' ( )+
£(t,)

(C® +1)+C)e™ ™ 1(s,) + (~(a +1)C — FCa (gt _ D-C; +aCe™mme g )
r

>0

This follows using the inequality (20).

_&*TC &*TC &°TC 8*TC
= _
os? a? 05|83t &x0s,

M, (—(a+r)C— z(e'("“"’) -D~-C,+aC e""""’)e"“‘"""”f(s )+
r

(CO+1)+C, )™ f(s, )~ +1)C- Fozevr )y ¢ aC e )g ol g (s )50
r 2

or, equivalently

o°’TC

M+
2

M,>

(CO+1)+C)e®f (s )(~(a +)C - Z(e'(” D)= C, +aC,ent e )b 'f(s,)>0
r

So we have shown that M,>0, M,>0 and M+ oTC

s |

M,;>0

It is not difficult to verify that the principal minors of higher order satisfy the following

recurrence relationships

MZ_ri— 1~ a aS

3+l

2 2. :
OTC v, ( oTC ) My, j=12,..., 01, (A1)

J+1
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&TC &1C | . '
M =—.,'M'._ M'-, =2,..., . A2
2 531_ 2j1 {&jasj] V22, ] n (A2)
Also we observe that
ATC - &°TC _ &*TC and 8’TC _ &°TC 3 0°TC
&il aj-s~lasj a}+lasj+l aszi»] ajﬂasj &jdasjﬂ
From (A1) and (A2) we obtain
&°TC &’TC &*TC
Mo+ My > — Mo+ M), A3
. 2§+1 at.l‘lasrl 2§ a[yl(‘jsj ( 2§ atﬁlasj Z_y-l) ( )
T aTC o*TC 5°TC |
Myt —— My = ——— (M. —— M,:.,). Ad
2 &Jdasj 24-1 ajasj ( 2§-1 ajasj 2j 2) ( )

Now, by applying ineqﬁality (A3) for j=1, we get M5>0. This result, accompanied by equation
(A4) for j=2 results to M;>0. Using induction we can prove that the principal minors of any

. order are positive,
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