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Abstract. In this paper the hard problem of locating routcs on the plane is
considered. The problem regards the transportation of protected materials or
goods from an origin o a destination point on the plane with transportation
route having to pass through an unfriendly area. The term "unfriendly" regards
a fixed number of points on the plane, thereon called "damage sources", that
represent installations or center points of activities that may create damage to
these goods or materials. The theoretical results introduced form the basis for
the application of a "branch-bound" methodology for the solution of this
problem for a single damage source.
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1. INTRODUCTION

The problem of locating transportation routes for the
transportation of hazardous materials closely interacts with that of
locating obnoxious facilities (eg. chemical plants, nuclear power
stations, amunition plants). Indeed, transporting hazardous materials
requires, in general, facilities for processing and storing them either at
the origin or at the destination.

Boffey and Karkazis (1990) considered the problem of
transporting hazardous materials in a network and proposed a general
. methodological approach to the problem. Karkazis and Boffey (1991)
presented a branch-bound algorithm for locating transportation routes in
. a network between two fixed points, termed origin and destination. The
routes are selected so as to minimize the expected damage effects on the
population in the case of an accident, under the influence of
meteorological conditions.

In this paper the hard problem of locating routes on the plane is
considered. The problem regards the transportation of goods or materials
from a point O (origin) to a point D (destination) on the plane with
transportation route having to pass through an unfriendly area. The term
"unfriendly" regards a fixed number of points on the plane (C;, i = 1,..,n)
that represent installations or center points of activities that may create
damage to these goods or materials. These points will be called thereon
"damage sources". Possible applications may involve flights of planes
over an alient area where damage sources may represent sites of enemy
missile batteries.

Function fi(r,) describes the accident probability density at a

point P on the plane related to damage source at C;. fi(r,)r, is assumed to
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be a strictly decreasing function of the euclidean distance r, = d(C;, P)

between P and damage source at Ci, that is:

df; (x, )r,/dr, <0 YV PEs where s is any route from O to D ()]

Notice that pair (rp, 0p) expresses the polar coordinates of point P
(see figure 1).
The accident probability Fi(s) along route s confined by points 0 and D is

given by the following line integral:

F(s) = [, @), @

I//m

Figure 1. Statement of the problem

The expected damage effects Dj(s) along route s due to a

damage source at C; are defined as follows:
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D;(s) = w,E(s) 3)

where w; is a weighting coefficient associated with the damage source at
Ci. The expected total damage effects D(s) along route s, due to the

system of the n damage sources, is given by the formula:
D(s)= X WiE() 4)

The generalized problem introduced in this paper regards the
determination of a route s = s(O, D) (confined by two fixed points O and

D) so as D(s) is minimised:
min__, D(s) (5)

where R represents an area open to transportation routes characterised as

"permitted area".

Notice that the constraint (I) imposed upon functions f; is a very
broad one and offers the means of representing with sufficient realism
situations where the “carrier” of damage effects (e.g. missiles) follows
an aerial route along which the accident probability is decreasing as the
distance of the carrier from the damage source is increasing. Notice,
also, that the family of functions fi(r) = a/ r* (a:constant, k> 1) satisfies

the imposed constraint.
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The problem that will be tackled in this paper regards the
determination of routes minimising the accident probability (expected

+ damage effects) in the presence of a single damage source:

min ., F(s) (6)

2. THE THEORETICAL BACKGROUND OF THE
PROBLEM

If a point P on the plane is represented by polar coordinates

(1p,0p) with respect to damage source C; then a route s=s(0O, D) could be
expressed in the form of a “radial” function s(8) 80<6<6p, where 0o, Op
are the angular coordinates of O, D respectively. Note that, for a given
point P, if 6 = 0, ,then s(0) = rp). The following well established result,

, Tegarding line integrals, gives the means of expressing accident

probability along a route s in terms of an ordinary integral.

Result 1. The accident probability along a route s = s (O, D) with

respect to a damage source C; is given by the following formula:

HORNEICONOTREOTICE )

where s(0) is the radial function, with respect to damage source C;

representing path s.

Result 2. The expected total damage effects along route s = s(O, D) are

* given by the following formula:
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D) = (O W GONS@F +5OT) dé

Proof. Immediate, from Result 1 and formula (4).

Let s(6), 0&[01,62] be the radial function describing a route s with
respect to a damage source C;. We define the following two basic types

of routes:

Definition 1. If s(6) =constant V 8E[61,02] then s will be called "polar"
(or "circular") route with respect to damage source C; (route s; of figure
2) whereas if s is part of a straight line passing through C; then s will be
called “radial” route with respect to damage source C; (route s2 of

figure 2).

Result3. The optimal route for problems (5) and (6) does not contain

loops.

* Proof. It is an immediate consequence of the fact that the D(s)
(respectively Fi(s)) strictly increases with the length of route s.

Definition 2. A route will be called "simple" if it does not contain loops.

Ut

&2
51 e

e,

B

Figure 2. Radial and polar routes
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Theorem 1. Let AC;B be an angle centered on C; and s a simple polar
route with respect to C; confined by points A, B that belong to the two
sides GiA, CB of the angle respectively (see figure 3). Let also q be a
route such that its end points A* and B* belong to the sides CiA, CiB of
, the angle respectively, whereas its interior points lie in the interior of the

area enclosed by the sides of the angle and polar route s. Then

E(s)<E(q)

Proof. Let s(0), q(8) be the radial functions describing routes s and q
respectively with respect to C; (6 & [04,08]). Then from the statement of

the theorem the following are immediate:

s(8)>q(e) V eE(¢;,85) (8)
and also
s'@)=0V ¢€[€;,8;] 9)

Furthermore, from (9) and result 1 we get that

F ) = [ £ (s@)s(@)de (10)

On the other hand from result 1

F() = [ fa@\[a@F +[a@ & and thus

F(@)=K @ - [ f(a@)a@e)de 1)
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From the assumption (1) and the relation (8) it is immediate that

K,(q) >E(s) (12)

Relations (11) and (12) establish the validity of the theorem.

Result4. If s=5(0), 6 = [04,08] represents a polar route with respect to
Ci then (see figure 2):

E(s) = f,(r))5, (¢; —¢4) where 1, =5(¢;)

Proof. Directly from Result 1 and relation s'(¢) = 0 which holds for

polar routes.

Figure 3. Theorem 1
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Figure 4. Theorem 2

Theorem 2. Let s be a radial route with respect to Ci confined by points
A and B such that sg > sa where sg = d(C;, B) and sa = d(C;, A) (see
figure 4). If q is any route (different than s) described by the radial
function q(0) €€[e,..¢,.] with respect to C; such that q(¢,.)=s, and

q(€;.) =sg then

E(q)=E(s)

Proof. From result 1 we have

F(a)= [ f(@@Wia @F +[a@)F dé hence

F(@)2 [ £,(a@)a@)de = [ £(q@)da(e) (13)

If we set, next, r=q(0) then it is obvious that
[ f,@@)da@) = [ f,@dr =E(s)
~ (132)

Ffom (13) and (13a )we get that
F(q) = E(s)

The above relation establishes the validity of the result.
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3. SOME FEATURES OF THE OPTIMAL
SOLUTION OF THE SINGLE DAMAGE
SOURCE PROBLEM

The following theorem establishes an important characteristic of
the optimal route s* of problem (6), namely that the polar function s*(0)
describing s* is convex with respect to C;.
This characteristic is a necessary requirement for establishing efficient

algorithmic solution methods converging to the optimum.

Theorem 3. The polar function s¥%(8), 0€[00,0p] with respect to C;
expressing the optimal (route) solution of problem (6) is convex with

respect to C;.

Proof. Let's assume for the moment that s*(0) possesses a concave part
Then this part of the route will lie in the interior of an area confined by
the angle OC;D and a polar path, say p, with respect to C;. Let A, B be
the intersections of p with this concave part of s*. Set, next, s;=s*(A, B)

and p1=p(A, B) (figure 5). Then from theorem I we get that
E(s,)>E(p,)

and thus the substitution of s, with the polar path p; would decrease the

accident probability of s*, a fact that contradicts the optimality of s*.
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i

Figure 5.Theorem3

Figure 6. Optimal routes for special cases
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Based on the theoretical background established in section 2 we could
derive the optimal route of problem (6) in the following two special

cases:

1. when origin and destination are equidistant from the damage source
at C; and the accident probability function takes the form fi(r) = ar
where a is a constant

ii. when origin and destination lie on the same radial line (see theorem
5)

Theorem 4. If the origin O and destination D are equidistant from C;

and the accident probability function f; with respect to C; takes the form:
fi(r)=a/r , a: constant

then the optimal route s* from O to D (figure 6) is the polar route with
respect to C; confined by points O and D.

Proof. Consider a simple route s = s(8), 8 €[00,0p] confined by points O
and D. Then from result 2

B = [ L6@NFET +[s@)F dé (14)

From (14) it is apparent that

BO)= [ 6@ = [ a/s@)se)e =g, ~20)  (15)
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and hence

: E(s)za(é, -&,) (16)

Consider next the polar route p connecting O and D; it is obvious that

p(8) = constant and p'(¢) =0 consequently 7)

E() = [ @/p@WP P +POF dé = [ @/pE)pE) =2, -¢o)
18)

From (16) and (18) we get that
E(s)=E(p)

Theorem 5. If the origin O and destination D lie on a straight line
passing through Ci then the optimal route s* from O to D is the radial

(linear) route connecting O and D.

Proof. The proof is a straightforward consequence of theorem 2.
Consider a route §& R.Routes can be divided into a number of
segments each one of them capable of being expressed by a radial
function s(8) with 6 appropriately confined (see figure 6). Let s(P;,P2) be
such a segment of s confined by points P, and P, with 6€[0,,0,].

Consider next the part s"(P,,P,") of s* that satisfies the relations:
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d(C,,P')=d(C,,P) and d(C,,P,') =d(C,,P,)

Then, for the routes s(P,,P,) and s"(P’,P,') theorem 2 states:

E(s'(P/,P,) sE(s(P,,P,)) (19)

Applying formula (19) for all segments of the above division we get that
E(s)=<E(s) (20)

Realation (20) establishes the validity of the theorem.

For the rest of this section it is assumed without loss of generality that
d(C;,0)=d(C,,D) 21D

It is proved, next, that under the broad condition (1) imposed on fi the
initial area of search for an optimal solution route s* of the problem (6)
can be reduced to a polar trapezoid confined by the radial lines CiO and
CD and two polar (cyclical) lines cantered at Ci. The first of them
passes through origin O whereas the second through a point U & CD
such that d(C;,U) = d(C;,D). Finally, using the two basic types of routes
(radial and polar) lower and upper bounds for the optimal value F;(s*) of

problem (6) are established.
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Theorem 6. If the function f; satisfies the constraint (1) then the optimal
route s* from O(ro, 8y) to D(rp,0p) lies in the polar trapezium confined
by the radial lines C;O and C;D and the polar routes (with respect to C;)
passing through points O and U(ry,0y) where U is a point on the radial

line C;D satisfying the constraint:

E (r(D,U)) = 0.5F,(p(D’, D))
Note that r(D, U) is the radial route confined ,by points D and U and
p(D', D) is the polar route confined by points D' and

D(D'€C,0:d(C,,D’) =r,, see figure 7).

Proof. From Theorem 1 it is immediate that s* cannot intersect the polar

triangle C,00" where O' is the intersection of the polar route passing

through O with radial line CD. Furthermore, from Theorem 2 it is
immediate that s* cannot intersect the area extending outside the angle
OCD. Finally, we will prove that s* cannot intersect the area extending
outside the circle centered at C; and having radius equal to d(C; ,U). We
assume for the moment that s* intersects it. Let Z be the most distant
"from C; point of s*. Set 1,=d(C;, Z) and consider the following two sub-
routes of s*: s;=s;(M, Z) and s; =s2(Z, D) where M is the intersection of

s* with the polar route p(D’,D). Then from Theorem 2 we get that

E(s,) = E(r(U,Z) > F.(r(U,D)) and E(s,) = E(r(U, Z)) > E(r(0, D))
(22)
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where Z' is the intersection of the polar route passing through Z with the
radial line CD and (U, Z') is the radial route confined by points U and
VAR

Figure 7. Theorem 6

From (22) we have that

E(s, Us,) > 2E (r(U,D))

On the other hand, from the statement of the theorem we get that

F.(r(U,D)) = 0.5E,(p(D', D)) (23)

From (22) and (23) it 1s immediate that

E(s, Us,) > E(p(M, D))
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That is, by substituting route s = s,Us, with polar route p(M, D)
we could further decrease the value of F;. The last conclusion contradicts
the optimality of s* and thus the original assumption (that s* extends

outside circle C(C,, r)) is false.

Theorem 7. The accident probability Fi(s*) of the optimal route s* from

O to D satisfies the following bounding relations:

(]

E(r(0,D) +E(p(D',D) = E(s") = E(1(0’, D)) + 0.5E (p(D’, D))

where r(0,D’)is the radial route confined by points O and D' and p(D',
D) is the polar route confined by D' and D.

Proof. Consider the route s =r(0,D")Up(D’,D)confined by O and D.

Then the optimality of s* requires that
Fi(s) = Fi(s*)

and hence the left part of the relation is valid.

*.}

Furthermore, as a consequence of theorem 6 (see figure 7) s*
belongs to the polar triangle CiUU' where U(r,, 0,) satisfies the

following relation:
E(x(D,U)) = [*£,(r)dr = 0,5E(p(O', D)) (24)

From theorem 2 and relation (24) we get that
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F(s)= E(x(0',U)) = E(r(0', D)) + E(x(D, U)) (25)

where r(X, Y) represents the radial route from X to Y.

From formuli (24) and (25, it is immediate that

E(s") = E(r(0', D)) + 0.5F, (p(D', D))

which proves the right part of the relation in the statement of the

theorem.

4. CONCLUSIONS

In the previous sections a theoretical basis was established
enabling the application of very powerful algorithms, such as "Branch-
Bound", which are capable of solving optimally the problem. The paper
introduces a spatial division of the plane into polar trapezoids and a
fathoming process based on the bounding constraints developed in
section 3. It is evident that the above methodology can be easily
generalized to similar problems in the 3-dimensional space such as air

transport and cruise missile route evaluations.
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